

Modeling on Statistical Distribution of Noise Parameters in Pulse-doped GaAs MESFETs

*Nobuo SHIGA, Shigeru NAKAJIMA, Kenji OTOBE, Takeshi SEKIGUCHI,
Nobuhiro KUWATA, Ken-ichiro MATSUZAKI, and Hideki HAYASHI*

Optoelectronics R&D Laboratories, Sumitomo Electric Industries, Ltd.
1, Taya-cho, Sakae-ku, Yokohama 244, JAPAN

ABSTRACT

Process-related variation of noise parameters in pulse-doped GaAs MESFETs is discussed in this paper. Fluctuation in gate length of the proposed devices is shown to be a dominant source of variation in noise parameters. The statistical distribution of the minimum noise figure (F_{min}) is modeled and the probability density function is described. Comparison between the calculated result of the derived equation and the measured distribution of F_{min} is also shown.

INTRODUCTION

Monolithic microwave integrated circuits (MMIC's) have been developed principally for non-commercial application such as electronic warfare systems. Recently, attention has been focussed on the R&D of MMIC's to replace hybrid devices used in consumer application such as direct broadcast satellite (DBS) receivers, owing to recent advances in GaAs materials and process maturity [1][2]. MMIC's allow miniaturization, reduction of the assembling cost in large volumes and improvement of reliability. For high volume consumer application, cost is the most important problem. The ability to fabricate devices consistently with uniform characteristics is a key factor in manufacturing cost-effective MMIC's.

Pulse-doped GaAs MESFET's were designed for MMIC use from this point of view [3]. In previous works, high performance with excellent uniformity was reported [4], and electronic properties were investigated as well [5]. The FET configuration is shown in Fig. 1. They have a very narrow, high carrier concentration (pulse-doped) active region and combine noise performance equaling that of AlGaAs/GaAs high electron mobility transistors (HEMT's), with the

reproducibility of the MESFET structure. Furthermore, relatively high throughput is achieved by the use of organometallic vapour phase epitaxy (OMVPE). The X-band amplifier and an MMIC family for a DBS down-converter based on the proposed devices with $0.5\mu m$ gate exhibited excellent low noise performance and a high yield [6][7]. Thus, the potential of the proposed device has been demonstrated.

On the other hand, yield enhancement by the design technique of the circuit should be studied for MMIC affordability as well as improvement of the uniformity by device technology. For this purpose, it is important to estimate the variation of their performance while designing them before fabrication: a great deal of emphasis is now being placed on yield modeling and yield prediction [8]-[10]. The mathematical representation of the statistical distributions in FET parameters greatly help to simulate the variation of the designed circuit's

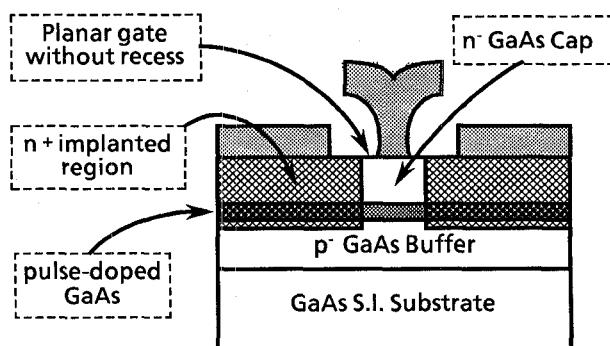
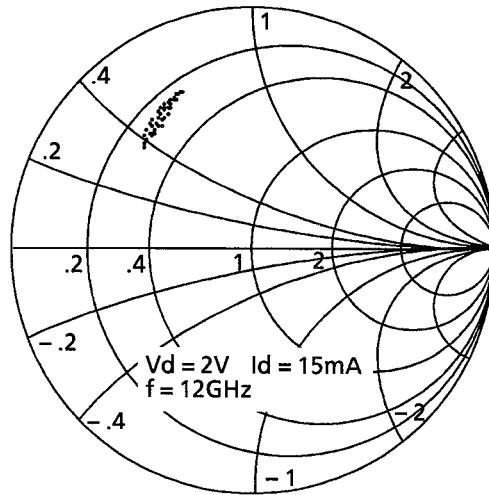


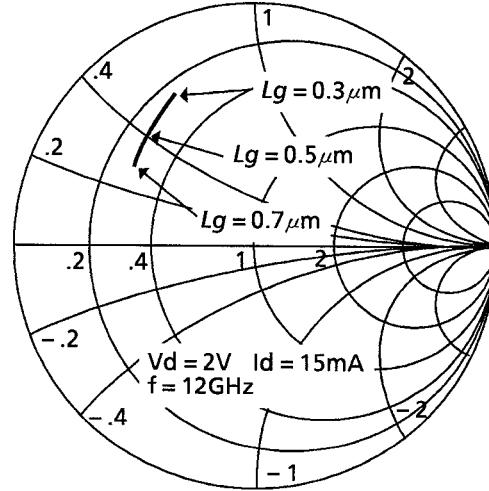
Fig.1: Structure of pulse-doped GaAs MESFET

*P- GaAs buffer layer (1 μm)
Si doped GaAs active layer ($4 \times 10^{18}/cm^3, 100\text{\AA}$)
Undoped n- layer (300 \AA)*

performance. In the case of the design of a low noise amplifier, a minimum noise figure (F_{min}) in the FET's is one of the most important parameters. However, the statistical distributions in noise parameters and the source of the variation have hardly been reported on.


The objective of this work is to model the statistics of F_{min} in the pulse-doped GaAs MESFET's. In this paper, measured distributions of noise parameters of pulse-doped GaAs MESFET's are presented. Process-related variation in gate length (L_g) is shown to be a large source of variation in F_{min} and optimum source reflection coefficient (Γ_{opt}) in the experimental results. The probability density function of F_{min} is derived from the statistical distribution of L_g for the first time. Finally, the calculated result of the derived probability density function is compared with the measured distribution of F_{min} , demonstrating a good correlation between both.

EXPERIMENT AND DISCUSSION


To determine the exact mathematical representation of the statistical distributions in F_{min} , all contributors of process-related variation should be taken into consideration. Generally, the epitaxial layer structure and/or the fabrication process are complicated in low noise devices. The proposed device, however, can simplify this problem due to the simple layer structure and its easy process. It could probably be assumed that the dominant factor will be variation in L_g , due to the following features [4].

- (1) The planar gate structure without the gate-recessed structure might be a strong factor of process-related variation in FET parameters
- (2) A quite uniform epi-layer obtained by specially designed OMVPE systems, providing less than 3% fluctuation in the uniformity of thickness and carrier concentration across a wafer 2 inches in diameter
- (3) Unavoidable L_g -variation in the submicron gate as defined by the conventional photolithography

To demonstrate this assumption, wafers were fabricated for measurement of F_{min} , Γ_{opt} , and L_g , with L_g designed to be from $0.3\mu\text{m}$ to $0.7\mu\text{m}$. Figure 2(a) shows the measured distribution of Γ_{opt} on a Smith chart in the FET's designed to be $0.4\mu\text{m}$ L_g in a wafer 2 inches in diameter typically processed: the measurement was performed at the bias condition for the lowest F_{min} at 12GHz. Variation in $\angle\Gamma_{opt}$ is demonstrated to be considerably larger in contrast to

(a) Measured distribution of Γ_{opt} in the FET's designed to be $0.4\mu\text{m}$ L_g

(b) Locus described by measured Γ_{opt} in some FET's having known L_g by precise SEM-measurement

Fig. 2: Comparison between the measured distribution of Γ_{opt} in the FET's designed to be $0.4\mu\text{m}$ L_g and a locus described by measured Γ_{opt} in some FET's having known L_g (measurement was performed at the bias condition for the lowest F_{min} at 12GHz)

negligible fluctuation in $|\Gamma_{\text{opt}}|$.

On the other hand, the solid line shown in Fig. 2(b) describes in the same way the little changing $|\Gamma_{\text{opt}}|$. The part ranging in L_g from $0.3\mu\text{m}$ to $0.5\mu\text{m}$ on the solid line corresponds well with the measured distribution of Γ_{opt} . This solid line illustrates a locus of Γ_{opt} in some FET's having different L_g in the same site: each L_g was precisely measured by a scanning electron microscope (SEM). Thus, process-related variation in L_g was found to be a strong source of this in Γ_{opt} . In Fig. 2(a), the slight breadth of the point swarm in the direction of the radius is thought to result from other process-related fluctuation.

Figure 3 shows the measured distribution of L_g designed to be $0.4\mu\text{m}$ in the same wafer. This distribution can be approximated by the gaussian as shown in this figure, and L_g is the gaussian random variable having the probability density function:

$$p_{L_g}(L_g) = \frac{1}{\sqrt{2\pi}\sigma_{L_g}} \exp\left[-\frac{(L_g - \bar{L}_g)^2}{2\sigma_{L_g}^2}\right] \quad (1)$$

$\sigma_{L_g}^2$: variance of L_g , \bar{L}_g : mean of L_g

On the other hand, F_{min} is expressed as the function of the random variable L_g as suggested in Cappy's equation[11]:

$$F_{\text{min}}(L_g) = 1 + 2\omega L_g \sqrt{(\alpha W_g + \beta I_d)(R_s + R_g)/v_{\text{ave}}} \quad (2)$$

ω : angular frequency α, β : Cappy's constants
 W_g : gate width I_d : drain current
 R_s : source resistance R_g : gate resistance
 v_{ave} : average carrier velocity

Figure 4 shows the measured F_{min} at 12GHz versus L_g in some FET's whose L_g is precisely measured and the calculated result of Cappy's equation. A small difference is found between the theoretical and measured slopes in Fig. 4. This may be because v_{ave} is assumed to be constant with gate length. As the gate length was shown to have a standard deviation, 10% of the mean gate length value, Cappy's equation is understood to be useful.

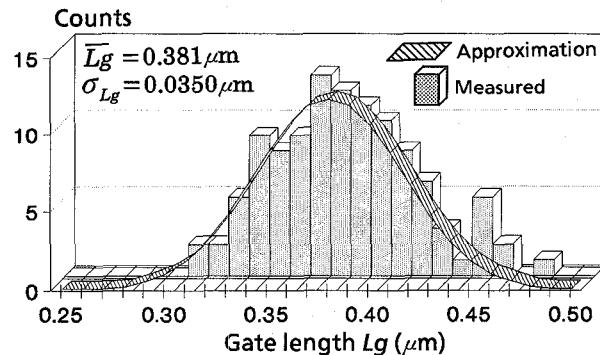


Fig. 3 : Measured distribution of L_g designed to be $0.4\mu\text{m}$ and fitting curve by gaussian approximation

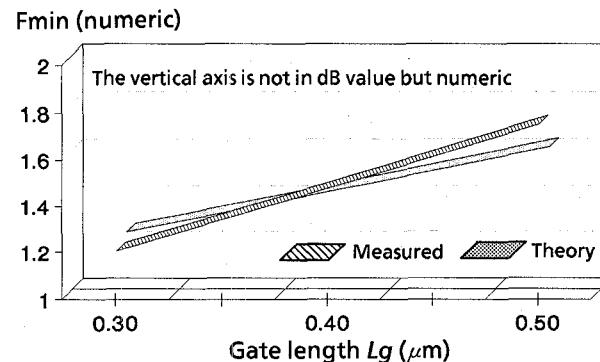


Fig. 4 : Measured F_{min} at 12GHz versus L_g in some FETs whose L_g is precisely measured and the calculated result of Cappy's equation

The probability density function of the new random variable F_{min} can be derived by variable transformation in Eq. (1) using Eq. (2); hence, we find as follows [12].

$$p_{F_{\text{min}}}(F_{\text{min}}) = \frac{1}{\sqrt{2\pi}C\sigma_{L_g}} \exp\left[-\frac{(F_{\text{min}} - 1 - CL_g)^2}{2C^2\sigma_{L_g}^2}\right]$$

$$C = 2\omega \sqrt{(\alpha W_g + \beta I_d)(R_s + R_g)/v_{\text{ave}}} \quad (3)$$

Figure 5 shows the measured distribution of F_{min} in FET's designed to be $0.4\mu\text{m}$ and the calculation result by the Eq. (3), demonstrating a good correlation

between both. Process-related variation in L_g , therefore, is also shown to be a dominant source of fluctuation in F_{min} . As a result, the statistical distribution of F_{min} can be calculated by this probability density function.

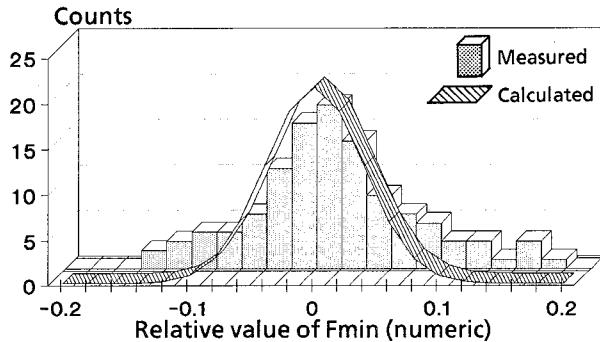


Fig. 5: Measured distribution of F_{min} in FETs designed to be $0.4\mu m$ and the calculated result of the Eq. (3)

The line is calculated by $N\Delta_{F_{min}}p_{F_{min}}(L_g)$, where N is the total number, and $\Delta_{F_{min}}$ of 0.02 is a step value of F_{min} in this histogram.

CONCLUSION

Process-related fluctuations in gate length between devices are found to be an apparent dominant source of the variation in Γ_{opt} and F_{min} . Therefore, the probability density function of F_{min} can be derived from the statistics of L_g -distribution, if a mathematical representation of F_{min} expressed as a function of L_g , which has good consistency with experimental results, are known. Cappy's modification of Fukui's classic equation was shown to be useful.

At a shorter gate length, which promise higher performance, the relative variation would be likely to increase. The obtained equation can be used if only the mean value and the standard deviation of L_g are known, helping to estimate the yield of MMIC's using pulse-doped MESFET's. Further study is required to determine the probability density function of Γ_{opt} , because Γ_{opt} is also a key parameter in the design of low noise amplifiers.

ACKNOWLEDGEMENT

The authors would like to thank K. Nakayama, Y. Kai, K. Kawahara, K. Mukai, Y. Kawabata, S. Aoki, and T. Satoh for their technical assistance. Special thanks are due to J. D. Madden, G. Sasaki, S. Shikata, Y. Hasegawa, T. Katsuyama and M. Nishiguchi for their kind support. The authors are grateful to K. Yoshida, M. Koyama, H. Kotani, K. Koe and A. Ishida for their encouragement and support.

REFERENCES

- [1] P.Wallace et al., "A low cost high performance MMIC low noise down converter for direct broadcast satellite reception," in *IEEE MMWMC Symp. Dig.*, pp.7-10, 1990.
- [2] Yoshimasu et al., "Low current GaAs MMIC family with a miniaturized band-stop filter for Ku-band broadcast satellite applications," in *GaAs IC Symp. Dig.*, 1991, pp. 147-150.
- [3] S.Nakajima et al., "OMVPE grown GaAs MESFET's with step-doped channel for MMIC's," in *GaAs IC Symp. Dig.*, pp.297-300, 1988.
- [4] S.Nakajima et al., "Pulse-doped GaAs MESFET's with planar self-aligned gate for MMIC," in *IEEE MTT-S Int. Microwave Symp. Dig.*, pp.1081-1084, 1990.
- [5] S. Nakajima et al., "Electronic properties of a pulse-doped GaAs structure grown by organometallic vapor phase epitaxy," *Appl. Phys. Lett.*, 57(13), pp. 1316-1317, 1990.
- [6] N.Shiga et al., "X-band monolithic four-stage LNA with pulse-doped GaAs MESFET's," *IEEE Trans. Microwave Theory Tech.*, vol. 39, no. 12, pp. 1987-1994, 1991.
- [7] N. Shiga et al., "MMIC family for DBS down-converter with pulse-doped GaAs MESFET's," in *GaAs IC Symp. Dig.*, 1991, pp. 139-142.
- [8] Y. Hwang et al., "Yield prediction and enhancement of monolithic amplifiers," in *GaAs IC Symp. Dig.*, 1989, pp. 295-298.
- [9] G.B. Norris et al., "GaAs MMIC yield modeling," in *GaAs IC Symp. Dig.*, 1990, pp. 317-320.
- [10] G.L. Bilbro et al., "Yield determination and design optimization of GaAs MESFET's Using a physical simulator," in *GaAs IC Symp. Dig.*, 1991, pp. 171-174.
- [11] A. Cappy et al., "Noise modeling in submicrometer-gate two-dimensional electron-gas field-effect transistors," *IEEE Electron Dev.*, vol. 32, pp. 2787-2795, 1985.
- [12] W. B. Davenport, Jr. et al., *An Introduction to the Theory of Random Signals and Noise*. New York, NY: IEEE PRESS, 1987, ch. 3.